
Understanding Algorithmic Differentiation

Moritz Wolter
March 16, 2025

The High-Performance Computing and Analytics Lab, University of Bonn

Overview

Course Intro

Motivating Algorithmic Differentiation

Backward Algorithmic Differentiation

Automation via Operator Overloading

Implementation in Python

1

Course Intro

Welcome to Advanced Machine Learning

Course schedule:

• Day 01: Advanced Optimization
• Day 02: Reinforcement learning
• Day 03: CNNs, Very deep neural networks, residual

connections
• Day 04: Bayesian Learning
• Day 05: Transformer for sequence-to-sequence processing,

Vision Transformer, Transfer learning.

2

Course Team

• Lecturers: Elena Trunz, Lokesh Veeramacheneni, Moritz
Wolter

• trunz@cs.uni-bonn.de
• lokiv@uni-bonn.de
• moritz.wolter@uni-bonn.de

• Tutors: Zahra Ganji, Niklas Kerkfeld, Pauline Lion

3

Funding

This course is brought to you with support from the BMBF
Projects BntrAInee and WestAI.

4

Motivating Algorithmic
Differentiation

Introduction

• Writing your own auto-grad engine is like programming your
own compiler, most likely you will never have to do this, but it
is the best way to understand what is going on behind the
scenes.

• Parts of this presentation are based on the book “Evaluating
Derivatives” by Griewank and Walther [GW08].

5

Terminology

The community does not agree on the terminology.

• According to [GW08] we should speak of Algorithmic
Differentiation (AD). [GW08] call the two common modes
reverse and forward mode.

• The reverse mode is also called backpropagation in the neural
network literature.

• [Gro18] for example, speaks of automatic differentiation
instead of algorithmic.

• The PyTorch developers, on the other hand, write autograd,
when they mean autodiff or algodiff.

Generally, these terms are synonymous, we should be careful not to
mix up forward and backward mode. We will study the backward
case today. If you see forward AD, that is something else.

6

Libraries for Neural Network Optimization

An Overview from Old to New:

• Theano (Python) (≈ 2009 - 2018)
• Torch (Lua) (≈ 2012 - 2017)
• Pytorch (Python, C++, JIT) (2012 - ongoing)
• Tensorflow (C++, Python) (2015 - ongoing)
• Jax (Python, JIT) (2018 - ongoing)

All of these Libraries provide the means for algorithmic gradient
computation.

7

Neural Network Optimization by Gradient Descent

Why are gradients so important?

Following the literature [GBC16, chapter 8], the vector θ denotes
learnable parameters. Our network is f . Gradient descent
computes,

gτ = 1
m∇θ

m∑
i=1

C(f (xi ; θ), yi), (1)

θτ+1 = θτ − ϵgτ . (2)

With the step counter τ , gradient operator ∇, cost function C ,
inputs x, and outputs y. It is efficient to process multiple batches
at once. m denotes the batch size and ϵ the step size.
We require accurate values for the gradient gτ .

8

The gradient

The gradient lists partial derivatives with respect to all inputs in a
vector. For a function f : Rn → R of n variables the gradient
∇f : Rn → Rn is defined as

∇f =


∂f
∂x1
∂f
∂x2...
∂f
∂xn

 . (3)

9

Computing the gradient of a paraboloid

A paraboloid is defined as

f (x1, x2) = x2
1 + x2

2 . (4)

We can find its gradient by hand

∇f (x1, x2) = ∇(x2
1 + x2

2) (5)

=
(

2x1

2x2

)
. (6)

10

Gradients at points

Equation 5 is defined for all x1, x2 ∈ R. We can evaluate the
expression by choosing values for both dimensions. In other words,
for every point p = (x1, x2, . . . , xn) we can write

∇f (p) =


∂f
∂x1

(p)
∂f
∂x2

(p)
...

∂f
∂xn

(p)

 . (7)

11

Gradients on the Paraboloid

12

Finite differences?

df (x)
dx = lim

h→0

f (x + h) − f (x)
h (8)

−3 −2 −1 0 1 2 3

0

2

4

6

8

parabola with derivative at two

13

Finite differences?

• Finite differences are computed by inserting a numerical value
into h instead of taking the limit.

• Can’t we use these instead?
• Choose for example x = 2 and h = 10−12.
• Numerical evaluation with f (x) = x2 yields

4.000355602329364, which is not quite 4.
• If we want to train large networks this precision difference

matters!

14

Finite differences?

• We risk underflow if we choose an h that is too small, since
depending on the precision we might observe f (x + h) ≈ f (x).
Unfortunately, increasing h also increases the error.

• Furthermore, numerical errors can accumulate if the input
dimension of vector-valued functions increases.

15

Finite Differences Error Accumulation Example

0 0.2 0.4 0.6 0.8 1
·104

10−3

10−2

10−1

100

dimension size

nu
m

er
ica

le
rro

r

Figure: Numerical error versus dimension the finite difference
approximation of f (x) =

∑N
i=1 x2

i ’s first derivative. x = 2 and h = 10−12.

16

Summary

• Gradients are the key to artificial neural network optimization.
• Finite differences are not good enough [GW08].
• What now?

17

Backward Algorithmic
Differentiation

Differentiation Rules

Chain Rule:
d
dx f (g(x)) = f ′(g(x)) · g ′(x) (9)

Product Rule:
d
dx (f (x) · g(x)) = df (x)

dx · g(x) + f (x) · dg(x)
dx (10)

Sum Rule:
d
dx (f (x) + g(x)) = d

dx f (x) + d
dx g(x) (11)

with x ∈ R.

18

Partial Derivatives

Functions with more than a single input have partial derivatives.
Given a function f (x1, x2, . . . xn) we write ∂f

∂x1
, ∂f

∂x2
, . . . , ∂f

∂xn
. When

computing a partial derivative we apply the usual rules for the
variable in the denominator and treat all other inputs as constant.

19

Example

To illustrate what the formulae mean let’s consider

f (x1, x2) = σ(x1 · x2) + x1 · x2 (12)

with σ(x) = 1
1+exp(−x) and σ′(x) = σ(x) · (1 − σ(x)). This

function has the partials,

∂f
∂x1

= σ′(x1 · x2) · x2 + x2 (13)

∂f
∂x2

= σ′(x1 · x2) · x1 + x1 (14)

20

The Jacobian

The Jacobian is an important tool, that allows the formulation of
the chain rule in its multivariate form. For the n input and m
output-case [Gro18],

∂

∂xy(x) = J =


∂y1
∂x1

. . . ∂y1
∂xn...

∂ym
∂x1

. . . ∂ym
∂xn

 (15)

21

The multivariate chain rule and Vector-Jacobian Products

We are interested in the contributions of each of the inputs
x1, x2, . . . xn to the change of an output y. In order to obtain a
column vector we re-express the chain rule as [Gro18]

δxc = JT δy. (16)

In the literature the partials of an intermediate vector h with
respect to the cost function is sometimes written as ḣ [GW08], h̄
[Gro18] or δh [Gre+16]. The transpose of the right side leads to a
row vector,

δxr = δyT J (17)

this form is often expressed as a sum to obtain a formula for each
input partial,

δxj =
∑

i
δyi

∂yi
∂xj

. (18)
22

Vector-Jacobian Product examples [Gro18]

A linear layer is typically defined as y = f (Wx + b). Considering
the matrix-vector product leads to,

h = Wx, J = W, δx = WT δh. (19)

For the element-wise function, we have,

y = σ(h), J =


σ′(h1) 0

. . .
0 σ′(hm)

 , δh = σ′(h) ⊙ δy, (20)

with the element-wise product ⊙, the sigmoid function
σ(x) = 1

1+exp(−x) and σ′(x) = σ(x) · (1 − σ(x)).

23

Automating the process

Neural networks are expressed as long chains of operations. A fully
connected network can be expressed as a composition of additions,
multiplications and element-wise activation functions.

Given an incoming inner derivative δh or seed value, we can write
down their partial derivatives.

24

Derivative flow through summation

To allow gradients to flow through summation we compute the
partials

y = x1 + x2 (21)

→ δx1 = ∂(x1 + x2)
∂x1

· δy = 1 · δy (22)

→ δx2 = ∂(x1 + x2)
∂x2

· δy = 1 · δy , (23)

with δy as the inner derivative or seed value.

25

Derivative flow through products

To allow gradients to flow through products we compute the
partials

y = x1 · x2 (24)

→ δx1 = ∂(x1 · x2)
∂x1

· δy = x2 · δy (25)

→ δx2 = ∂(x1 · x2)
∂x2

· δy = x1 · δy , (26)

with δy as the inner derivative or seed value.

26

Derivative flow through activation functions

Similarly for an element-wise function f,

y = f (x) (27)
→ δx = f ′(x)δy . (28)

27

Matrix multiplication

Computing the output of a fully connected linear layer y = Wx + b
requires evaluating a matrix-vector product. We can re-write this
to use only scalar sums and products,

yi =
∑

j
wijxj + bi (29)

Python’s built-in sum function will help you here.

28

Magic functions in Python

Backward mode Algorithmic Differentiation requires us to keep
track of all operations and record what to do when users trigger
the backward pass. An elegant way of achieving this goal is by
re-implementing the add and mul functions. These two
functions allow you to control the effect of + and * operations.

29

Conclusion

We have seen the elements we require to implement an autograd
engine in Python. Today’s exercise asks you to try for yourself.

30

Literature i

References

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[Gre+16] Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
Bas R Steunebrink, and Jürgen Schmidhuber. “LSTM:
A search space odyssey.” In: IEEE transactions on
neural networks and learning systems 28.10 (2016),
pp. 2222–2232.

31

Literature ii

[GW08] Andreas Griewank and Andrea Walther. Evaluating
derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

[Gro18] Roger Grosse. CSC321 Lecture 10: Automatic
Differentiation. https://www.cs.toronto.edu/

˜rgrosse/courses/csc321_2018/slides/lec10.pdf.
2018.

32

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/slides/lec10.pdf

	Course Intro
	Motivating Algorithmic Differentiation
	Backward Algorithmic Differentiation
	Automation via Operator Overloading
	Implementation in Python

	References

